

## Reversible Binding and Reduction of Dinitrogen by a Uranium(III) Pentalene Complex

F. Geoffrey N. Cloke\* and Peter B. Hitchcock

The Chemistry Laboratory, School of Chemistry, Physics, and Environmental Science, University of Sussex, Brighton BN1 9QJ, UK

Received May 22, 2002

The binding and activation of dinitrogen by well-defined molecular complexes is an area of considerable current interest.<sup>1</sup> While N<sub>2</sub> coordination, reduction, and cleavage are all wellestablished for transition-metal systems, examples of such behavior for the actinide elements is extremely uncommon. Scott has reported a binuclear, U(III) triamidoamine complex containing a side-on bridging N<sub>2</sub> ligand in which the N-N bond length is essentially unperturbed from that in free  $N_2$ .<sup>2</sup> The only other example is the heterobimetallic U-Mo compound of Cummins, also supported by amide-type ligands, which contains a bridging, linear  $N_2^{2-}$  (diazenido) ligand.<sup>3</sup> We have recently developed the synthesis of the silvlated pentalene dianion  $C_8H_4$ {Si<sup>i</sup>Pr<sub>3</sub>-1,4}<sub>2</sub><sup>2-</sup> as a ligand for organo-f-element chemistry,4 and given the ability of tris(cyclopentadienyl)uranium(III) complexes to bind CO,5 we were encouraged to investigate the synthesis and reactivity of uranium(III) pentalene derivatives. In this work we report the preparation of the mixed-sandwich U(III) complex  $[U(\eta-Cp^*)(\eta-C_8H_4{Si^iPr_3-$ 1,4}2)] and its ability to reversibly bind and reduce dinitrogen to afford a binuclear U(IV) complex, which contains a bridging, sideways-bound N<sub>2</sub><sup>2-</sup> ligand.

[UI<sub>3</sub>(THF)<sub>4</sub>] is a useful starting material for U(III) chemistry;<sup>6</sup> however, since we wished to prepare U(III) pentalene complexes in the absence of strong donor ligands for subsequent reactions with small molecules, base-free UI<sub>3</sub> was employed in the present work. The latter may be conveniently prepared by reaction of U turnings with 1.5 equiv of HgI<sub>2</sub> in a sealed tube at 320 °C, in a modification of the method of Corbett for the synthesis of lanthanide triodides.<sup>7</sup> The reaction of UI<sub>3</sub> with 1 equiv of KCp\* in diethyl ether affords a dark-green material which we assumed to be {UCp\*I<sub>2</sub>}<sub>n</sub>, or an etherate thereof. This was not isolated but reacted directly with K<sub>2</sub>[C<sub>8</sub>H<sub>4</sub>{Si<sup>i</sup>Pr<sub>3</sub>-1,4}<sub>2</sub>] in toluene under argon to afford purple-black, crystalline [U( $\eta$ -Cp\*)( $\eta$ -C<sub>8</sub>H<sub>4</sub>{Si<sup>i</sup>Pr<sub>3</sub>-1,4}<sub>2</sub>)] **1** in moderate (40%) yield after workup (see eq 1).<sup>8</sup>



Crystals of **1** suitable for X-ray diffraction studies were grown from hexane at -20 °C under argon, and the molecular structure is shown in Figure 1.<sup>9</sup>

1 adopts a slightly bent sandwich structure, in which the M1-U-M2 angle is 170.1° where M1 and M2 are the centroid of the Cp\* ring and the midpoint of the pentalene (bridgehead) C4-C5 bond, respectively. The fold angle of the pentalene ring



Figure 1. Molecular structure of 1 (thermal ellipsoids at 50%).

about the latter bond is 26°, compared with that of 24° in the more sterically congested Th(IV) complex  $[Th(\eta-C_8H_4{Si^iPr_3-1,4}_2)_2]^{.10}$ The U–C1 (2.733(7) Å), U–C3 (2.721(7) Å), U–C6 (2.683(7) Å), and U–C8 (2.722(7) Å) bond distances (which constitute the major,  $\delta$ -symmetry bonding interaction in actinide pentalene complexes<sup>11</sup>) in **1** are correspondingly slightly shorter than those in  $[Th(\eta-C_8H_4{Si^iPr_3-1,4}_2)_2]$  (2.797(11), 2.748(10), 2.748(10), and 2.797(11) Å). The U–Cp\* ring carbon distances lie in the range 2.734(8)–2.766(7) Å, comparable to those found in [UCp\*(COT)-(THF)] (average 2.752 Å).<sup>12</sup>

Both the <sup>1</sup>H and <sup>29</sup>Si NMR spectra of **1** in argon-saturated  $d_6$ -benzene exhibit the expected resonances for a pseudo-C<sub>2</sub>-symmetric molecule, and the <sup>29</sup>Si spectrum in  $d_8$ -toluene at -70 °C gave no evidence for a static agostic structure in solution on the NMR time scale. However, exposure of the sample to an atmospheric pressure of dinitrogen generated an additional set of 11 resonances in the <sup>1</sup>H spectrum and two new resonances in the <sup>29</sup>Si spectrum. Freeze-pump thawing (×3) of the sample led to complete disappearance of signals due to the new species **2**.<sup>13</sup> Greenblack, X-ray-quality crystals of **2** were grown by fractional crystallization from a pentane solution of **1** under a 5 psi overpressure of N<sub>2</sub> at -20 °C, and the molecular structure is shown in Figure 2.<sup>14</sup>

**2** has a binuclear structure, in which two units of **1** are bridged by a sideways-bound dinitrogen unit. The key structural feature of the latter is the N1–N2 bond length of 1.232(10) Å, consistent with an N–N double bond and comparable to that found in  $[(TmCp^*)_2(\mu-\eta^2:\eta^2-N_2)]$  (1.259(4) Å),<sup>15</sup> but significantly longer than the N–N triple bond in  $[(U\{NN'_3\})_2(\mu-\eta^2:\eta^2-N_2)]$  (1.109(7) Å).<sup>2</sup> It has been suggested that the inability of  $[U(NN'_3)]$  to reduce N<sub>2</sub> is due to steric repulsion between the ligands in  $[(U\{NN'_3\})_2(\mu-\eta^2:$  $\eta^2-N_2)]$  and consequent poor orbital overlap between the uranium centers and the  $\mu-\eta^2:\eta^2-N_2$  fragment.<sup>2</sup> However, the U–N distances in **2** (2.401(8)–2.423(8) Å) are essentially identical (within esds) to those in  $[(U\{NN'_3\})_2(\mu-\eta^2:\eta^2-N_2)]$ ,<sup>2</sup> so the difference in N–N bond order is surprising, but may be a consequence of different frontier orbital geometries in the two ligand environments. The U<sub>2</sub>N<sub>2</sub>

<sup>\*</sup> To whom correspondence should be addressed. E-mail: f.g.cloke@sussex.ac.uk.



*Figure 2.* Molecular structure of **2** (isopropyl groups removed for clarity, thermal ellipsoids at 50%).

unit in the core of **2** is folded from planarity away from the pentalene ligands (presumably for steric reasons) by 5° about the N1–N2 bond, and relevant angles within the core are:  $74.3(5)^{\circ}$ (N2–N1–U1),  $74.3(5)^{\circ}$  (N2–N1–U2),  $148.1(3)^{\circ}$  (U1–N1–U2),  $76.2(5)^{\circ}$  (N1–N2–U1),  $76.2(5)^{\circ}$  (N1–N2–U2), and  $151.9(3)^{\circ}$ (U1–N2–U2). The two pentalene ligands are differentiated by slightly different fold angles (26° about C40–C41 and 22.5° about C4–C5), and the significant U-ring C interactions (to C37, C39, C42, C44, and to C1, C3, C6, C8), which range from 2.688(11) to 2.775(9), are essentially identical to those in **1**. Similarly, the U–Cp\* centroid distances in **2** (U2–M2, 2.524 Å; U1–M1, 2.505 Å) are the same as that in **1** (2.486 Å) within esds. Hence the change in formal oxidation state from U(III) in **1** to U(IV) in **2** is not reflected in the structural parameters, but this is almost certainly due to the steric congestion in **2**.

Assuming that the low-temperature X-ray structure, in which the pentalene ligands are differentiated by different fold angles, is not maintained in solution, **2** has  $C_2$  symmetry. The  $C_2$  axis renders the two pentalene groups equivalent, but the two five-membered rings of the individual pentalene ligands are no longer symmetry-related, in agreement with the solution NMR data. The N=N stretch is predicted to be IR active in this point group; however, no absorptions assignable to this stretch were observed in the appropriate region of the IR spectrum in solution or the solid state for either **2**-<sup>14</sup>N or **2**-<sup>15</sup>N. This absorption may well be very weak, or obscured by the strong ligand vibrations in the region 1350–1500 cm<sup>-1</sup>.

The reversible formation of **2** (eq 2) involves a formal oxidation of two U(III) centers to U(IV) with concomitant reduction of  $N_2$  to  $N_2^{2^-}$ .



However, even under 50 psi of N<sub>2</sub> the reaction only proceeds to ca. 75% completion in an NMR tube, and **2** loses dinitrogen extremely easily both in solution and the solid state.<sup>16</sup> The instability of **2** with respect to loss of N<sub>2</sub> and reformation of **1** is likely a reflection of the consequent relief of steric crowding and regeneration of the essentially parallel sandwich structure; this is in contrast to [U(NN'<sub>3</sub>)], which is clearly pre-organized toward N<sub>2</sub> binding.

Acknowledgment. We thank EPSRC for financial support.

**Supporting Information Available:** X-ray data for **1** and **2** (PDF). X-ray crystallographic files (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

## References

- (1) Fryzuk, M. D.; Johnson, A. J. Coord. Chem. Rev. 2000, 200, 379.
- (2) Roussel, P.; Scott, P., J. Am. Chem. Soc. 1998, 120, 1070; Roussel, P.; Errington, W.; Kaltsoyannis, N.; Scott P. J. Organomet. Chem. 2001, 635, 69.
- (3) Odom, A. L.; Arnold, P. L.; Cummins, C. C. J. Am. Chem. Soc. 1998, 120, 5836.
- (4) Cloke, F. G. N. Pure and Appl. Chem. 2001, 73, 233.
- (5) Conejo, M. D.; Parry, J. S.; Carmona, E.; Schultz, M.; Brennann, J. G.; Beshouri, S. M.; Andersen, R. A.; Rogers R. D.; Coles, S.; Hursthouse M. Chem. Eur. J. 1999, 5, 3000.
- (6) Avens, L. R.; Burns, C. J.; Butcher, R. J.; Clark, D. L.; Gordon, J. C.; Schake, A. R.; Scott, B. L.; Watkin, J. G.; Zwick, W. D. Organometallics 2000, 19, 451.
- (7) Corbett, J. D. Inorg. Synth. 1983, 22, 31.
- (8) Synthesis of 1 (under Ar). To a suspension of UI<sub>3</sub> (0.619 gm, 1 mmol) in Et<sub>2</sub>O (75 mL) was added a suspension of KCP\* (0.174 gm, 1 mmol) in Et<sub>2</sub>O (25 mL) and the mixture stirred for 24 h. The resultant green solution was filtered from precipitated KI, stripped to dryness and final traces of Et<sub>2</sub>O removed at 60 °C under vacuum. The residue was taken up in toluene (75 mL), and to this solution was added a solution of K<sub>2</sub>[C<sub>8</sub>H<sub>4</sub>{Si<sup>P</sup>P<sub>3</sub>-1, 4}<sub>2</sub>] (0.492 g, 1 mmol) in toluene (25 mL) dropwise with stirring, and the mixture stirred for 6 h. The brown suspension was stripped to dryness, extracted with pentane (2 × 50 mL), and the pentane extracts were filtered through a pad of Celite on a frit. The resultant deep brown solution was concentrated to ca. 15 mL, and slow cooling to -45 °C afforded purple-black crystals of 1 which were isolated, washed with cold pentane (3 × 5 mL), and dried in vacuo. Yield 0.31 g, 40%. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 293 K): δ ppm -10.5 (br s, <sup>1</sup>Pr-CH<sub>3</sub>, 18H), -13.4 (br s, <sup>1</sup>Pr-CH<sub>3</sub>, 18H), -42.2 (br s, pentalene ring-CH, 2H), -22.0 (br s, <sup>1</sup>Pr-CH<sub>3</sub>, 18H), -42.2 (br s, pentalene ring-CH, 2H). <sup>2</sup>Osi{<sup>1</sup>H</sup> NMR (C<sub>6</sub>D<sub>6</sub>, 298 K): δ ppm -176. <sup>2</sup>Osi{<sup>1</sup>H</sup> NMR (C<sub>7</sub>D<sub>8</sub>, 201K): δ ppm -295. MS (EI): m/z 787 (M<sup>+</sup>). Anal. Calcd for C<sub>36</sub>H<sub>61</sub>Si<sub>2</sub>U: C, 54.87; H, 7.80. Found: C, 54.78; 8.29.
- (9) Crystal data for 1: Monoclinic, FW 788.06, in the space group P2<sub>1</sub>/n (No. 14); a = 16.5194(4) Å, b = 11.6816(3) Å, c = 18.7404(5) Å, α = 90°, β = 90.504(1)°, γ = 90°, Z = 4. Final residual wR2(all data) = 0.107 (R = 0.062, with goodness of fit 1.093 on F<sup>2</sup>).
- (10) Cloke, F. G. N.; Hitchcock P. B. J. Am. Chem. Soc. 1997, 119, 7899.
- (11) Cloke, F. G. N.; Green, J. C.; Jardine C. N. Organometallics 1999, 18, 1080.
- (12) Schake, A. R.; Avens, L. R.; Burns, C. J.; Clark, D. L.; Sattelberger, A. P.; Smith, W. H. *Organometallics* **1993**, *12*, 1497.
- (13) NMR data for 2 (C<sub>6</sub>D<sub>6</sub>, 293 K). <sup>1</sup>H: δ ppm 57.1 (br s, pentalene ring-CH, 1H), 53.4 (br s, pentalene ring-CH, 1H), 9.2 (br s, pentalene ring-CH, 1H), -2.4 (br s, <sup>1</sup>Pr-CH, 3H), -3.7 (br s, Cp\*-CH<sub>3</sub>, 15H), -3.75 (br s, <sup>1</sup>Pr-CH<sub>3</sub>, 9H), -3.8 (br s, <sup>1</sup>Pr-CH<sub>3</sub>, 9H), -4.1 (br s, <sup>1</sup>Pr-CH<sub>3</sub>, 9H), -9.4 (br s, <sup>1</sup>Pr-CH<sub>3</sub>, 9H), -12.4 (br s, pentalene ring-CH, 1H), -15.4 (br s, <sup>1</sup>Pr-CH, 3H). <sup>29</sup>Si<sup>1</sup>H<sup>3</sup>: δ ppm -108, -185.
- (14) Crystal data for **2**: Monoclinic, FW 1604.14, in the space group  $P2_1/n$ (No. 14); a = 13.1165(3) Å, b = 29.7960(5) Å, c = 19.8885(10) Å,  $\alpha = 90^{\circ}$ ,  $\beta = 109.203(8)^{\circ}$ ,  $\gamma = 90^{\circ}$ , Z = 4. Final residual wR2(all data) = 0.158 (R = 0.071, with goodness of fit 1.133 on  $F^2$ ).
- (15) Evans, W. J.; Allen, N. T.; Ziller, J. W. J. Am. Chem. Soc. 2001, 123, 7927.
- (16) The facile loss of  $N_2$  from 2 preluded meaningful microanalysis.

JA027000E